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Abstract

In this paper, we focus on improving online multi-object

tracking (MOT). In particular, we introduce a region-based

Siamese Multi-Object Tracking network, which we name

SiamMOT. SiamMOT includes a motion model that esti-

mates the instance’s movement between two frames such

that detected instances are associated. To explore how the

motion modelling affects its tracking capability, we present

two variants of Siamese tracker, one that implicitly mod-

els motion and one that models it explicitly. We carry

out extensive quantitative experiments on three different

MOT datasets: MOT17, TAO-person and Caltech Roadside

Pedestrians, showing the importance of motion modelling

for MOT and the ability of SiamMOT to substantially out-

perform the state-of-the-art. Finally, SiamMOT also outper-

forms the winners of ACM MM’20 HiEve Grand Challenge

on HiEve dataset. Moreover, SiamMOT is efficient, and it

runs at 17 FPS for 720P videos on a single modern GPU.

1. Introduction

Multi-object tracking (MOT) is the problem of detect-

ing object instances and then temporally associating them

to form trajectories. Early works [1, 3, 4, 17, 29, 33, 46, 49,

53, 53, 59, 64, 65, 71, 72] formulate instance association as

a graph-based optimization problem under the “tracking-

by-detection” paradigm, in which a node represents a de-

tection and an edge encodes the likelihood of two nodes

being linked. In practice, they use a combination of vi-

sual and motion cues to represent each node, which often

requires expensive computation. Furthermore, they usu-

ally construct a large offline graph, which is non-trivial to

solve, making them inapplicable for real-time tracking. Re-

cently, online trackers [5,7,60,76] started to emerge, as they

are more desirable in real-time tracking scenarios. They

focus on improving local linking over consecutive frames

rather than building an offline graph to re-identify instances

across large temporal gaps. Among these, some recent

works [5, 75] have pushed online MOT into state-of-the-art

territory, making them very competitive.

In this work, we explore the importance of modelling

motion in online MOT by building upon “Simple and On-

line Realtime Tracking” (SORT) [7,60] that underlies recent

state-of-the-art models [5, 76]. In SORT, a better motion

model is the key to improving its local linking accuracy.

For example, SORT [7] uses Kalman Filters [31] to model

the instance’s motion with simple geometric features, while

the more recent state-of-the-art trackers [5, 76] learn a deep

network to predict the displacement (motion) of instances

based on both visual and geometric features, significantly

outperforming the simpler SORT.

We conduct our motion modelling exploration by lever-

aging a region-based Siamese Multi-Object Tracking net-

work, which we name SiamMOT. We combine a region-

based detection network (Faster-RCNN [45]) with two mo-

tion models inspired by the literature on Siamese-based

single-object tracking [6, 18, 22, 35, 36]: an implicit mo-

tion model (IMM) and an explicit motion model (EMM).

Differently from CenterTrack [76] that implicitly infers

the motion of instances with point-based features [16, 44,

56], SiamMOT uses region-based features and develops

(explicit) template matching to estimate instance motion,

which is more robust to challenging tracking scenarios, such

as fast motion.

We present extensive ablation analysis on three differ-

ent multi-person tracking datasets. Our results suggest that

instance-level motion modelling is of great importance for

robust online MOT, especially in more challenging tracking

scenarios. Furthermore, we show that the motion models of

SiamMOT can improve tracking performance substantially,

especially when cameras are moving fast and when people’s

poses are deforming significantly. On the popular MOT17

Challenge [42] SiamMOT with EMM achieves 65.9 MOTA

/ 63.3 IDF1 with a DLA-34 [69] backbone by using public

detection, outperforming all previous methods. Moreover,

on the recently introduced large-scale TAO-person dataset

[14], SiamMOT substantially improves over the state-of-

the-art Tracktor++ [5] from 36.7 to 41.1 TrackAP [14, 66].

Finally, we benchmark SiamMOT on the Human In Events

(HiEve) dataset [41], where it outperforms the winner of the

ACM MM’20 grand HiEve challenge [40].
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2. Related work

2.1. Siamese trackers in SOT

Single object tracking (SOT) refers to tracking a given

object of interest, which is usually specified in the first

frame and could belong to any semantic object class. In-

stead of detecting pre-defined objects in a frame and linking

them back to earlier tracked instances, single object track-

ers (SOT) usually model the motion of the object of inter-

est directly to predict its trajectory. Siamese-based track-

ers [6, 18, 22, 23, 26, 28, 35, 36, 54, 57, 73, 74, 78] are a fam-

ily of state-of-the-art SOT. As the name suggests, Siamese

trackers operate on pairs of frames. Their goal is to track (by

matching) the target object in the first frame within a search

region in the second frame. This matching function is usu-

ally learned offline on large-scale video and image datasets.

In this paper, we formulate Siamese trackers within

an end-to-end trainable multi-object tracking network

(SiamMOT). The closest work to ours is DeepMOT that

also trains Siamese trackers with other components under

the proposed MOT training framework. However, Deep-

MOT focuses on improving the structured loss in MOT

rather than formulating the detector and tracker in a unified

network, so an off-the-shelf single object tracker is needed

in DeepMOT. Finally, while we take inspiration from partic-

ular Siamese trackers [22,34,36], our formulation is generic

enough that other Siamese trackers can easily be adapted in

our MOT framework.

Siamese network. It’s worth noting that Siamese trackers

are different from general Siamese networks [34, 52, 58].

Siamese networks usually learn a affinity function between

two detected instances, whereas Siamese trackers learn a

matching function that is used to search for a detected in-

stance within a larger contextual region.

2.2. TrackingbyDetection in MOT

Many works tackle multi-object tracking (MOT) by

adopting the “tracking-by-detection” paradigm [1, 3, 4, 11,

17, 19, 29, 33, 34, 46, 47, 49, 53, 59, 64, 65, 71, 72], where

objects instances are first detected in each frame and then

associated across time based on their visual coherence and

spatial-temporal consistency. Some of these works focused

on learning new functions to evaluate short-term associa-

tions more robustly [10, 19, 34, 46, 47, 49, 53, 53, 64, 72, 72].

Others, instead, focused on learning how to output more

temporally consistent long-term tracks by optimizing lo-

cally connected graphs [1, 3, 4, 17, 29, 33, 46, 49, 53, 53, 59,

64, 65, 71, 72]. Many of these approaches are inefficient, as

they employ separate computationally expensive cues, like

object detection [12,20,27,45], optical flow [10,15,51,53],

and re-identification [30, 46, 53, 53, 75].

Online MOT. Online MOT refers to performing instance

association on the fly without knowledge of future frames

[2,5,7,32,60,63,76]. Therefore, online MOT focuses more

on accurate local association rather than global-optimal as-

sociation in which detections can be linked across long tem-

poral gaps (as in offline graph modelling). It has seen a

resurgence of popularity recently as new models are effi-

cient enough to be applicable to real-time tracking. For ex-

ample, Ban et al. [2] formulated it in a probabilistic frame-

work by using a variational expectation maximization al-

gorithm to find the tracks. Xiang et al. [63] used Markov

Decision Processes and reinforcement learning for online

instance association. Bewley et al. [7, 60] developed sim-

ple object and realtime tracking (SORT) for quick online

instance association. SORT has been widely used in recent

deep neural network based models [5, 76] which achieve

state-of-the-art performance on public MOT datasets. Our

SiamMOT is based on SORT, and we explore how to im-

prove its tracking performance.

Motion modelling in SORT. The original SORT [7] only

used geometric features of tracks (location, box shape, etc)

in its motion model to track locations across frames. Later,

Wojke et al. [60] improved SORT by incorporating visual

features into the motion model to link the detected in-

stances. Recently, Bergmann et al. [5] and Zhou et al. [76]

jointly learned the motion model with the detector such

that both visual and geometric features are used. In detail,

Tracktor [5] leveraged a two stage detector [45] to regress

from previous person’s location to current frame; Center-

Track [76] adopted a track branch to regress the displace-

ment of object centers between frames. In this paper, we

explore how to improve the motion model in SORT-based

tracking model – SiamMOT, and more importantly how it

leads to improved MOT accuracy.

3. SiamMOT: Siamese Multi-Object Tracking

SiamMOT builds upon Faster-RCNN object detec-

tor [20, 27, 45], which consists of a Region Proposal Net-

work (RPN) and a region-based detection network. On top

of the standard Faster-RCNN, SiamMOT adds a region-

based Siamese tracker to model instance-level motion. As

shown in Fig. 1, SiamMOT takes as input two frames

It, It+δ together with a set of detected instances Rt =
{Rt

1, . . . R
t
i, . . .} at time t. In SiamMOT, the detection net-

work outputs a set of detected instances Rt+δ , while the

tracker propagates Rt to time t+ δ to generate R̃t+δ .

As in SORT, SiamMOT contains a motion model that

tracks each detected instance from time t to t + δ by prop-

agating the bounding box Rt
i at time t to R̃t+δ

i at t + δ ;

and a spatial matching process that associates the output of

tracker R̃t+δ
i with the detections Rt+δ

i at time t+ δ such

that detected instances are linked from t to t+ δ.
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Figure 1: (Best viewed in color) SiamMOT is a region-based multi-object tracking network that detects and associates object instances

simultaneously. The Siamese tracker models the motion of instances across frames and it is used to temporally link detection in online

multi-object tracking. Backbone feature map for frame I
t is visualized with 1/2 of its actual size.

In the next section we introduce how our Siamese tracker

models instance motion in SiamMOT (Sec. 3.1) and present

two variants of Siamese trackers in Sec. 3.2 and Sec. 3.3.

Finally, we provide the details for training and inference

(Sec. 3.4).

3.1. Motion modelling with Siamese tracker

In SiamMOT, given a detected instance i at time t,

the Siamese tracker searches for that particular instance at

frame It+δ in a contextual window around its location at

frame It (i.e, Rt
i). Formally,

(vt+δ
i , R̃t+δ

i ) = T (f tRi
, f t+δ

Si
; Θ) (1)

where T is the learnable Siamese tracker with parameters

Θ, f tRi
is the feature map extracted over region Rt

i in frame

It, and f t+δ
Si

is the feature map extracted over the search

region St+δ
i in frame It+δ . We compute St+δ

i by expand-

ing Rt
i by a factor r (> 1) while maintaining the same ge-

ometric center (e.g., dashed bounding box in Fig. 1). We

extract features f tRi
and f t+δ

Si
using the region of interest

align (ROIAlign) layer of Mask-RCNN [27]. Finally, vt+δ
i

is the confidence of visibility for detected instance i at time

t + δ. As long as the instance is visible in St+δ
i , T should

produce a high score vt+δ
i , otherwise T should produce a

low score. Note how this formulation is reminiscent of that

of Siamese-based single-object trackers [6, 28, 35, 36] and

specifically, how they model the instance’s motion between

frames.

In the context of multi-object tracking, we apply Eq. 1

multiple times, once for each detected instance Rt
i ∈ Rt.

Importantly, our SiamMOT architecture allows these op-

erations to run in parallel and only requires the backbone

features to be computed once, making online tracking infer-

ence efficient.

We conjecture that motion modelling is particularly im-

portant for online MOT. Specifically, association between

Rt and Rt+δ will fail if 1) R̃t+δ does not match to the right

instance in Rt+δ or 2) vt+δ
i is low for a visible person at

t + δ. Previous works [5, 76] approach the problem of re-

gressing R̃t+δ from the previous location (i.e. Rt
i) by feed-

ing the model with features from both frames. By doing

so these works aim to implicitly model the instance’s mo-

tion in the network. However, as research in single-object

tracking [6,22,35,36] reveals, finer-grained spatial-level su-

pervision is of great significance to explicitly learn a robust

target matching function in challenging scenarios. Based on

this rationale, we present two different parameterizations of

T in SiamMOT – an implict motion model in Sec. 3.2 and

an explicit motion model in Sec. 3.3.

3.2. Implicit motion model

Implicit motion model (IMM) uses an MLP to implicitly

estimate the instance-level motion between two frames. In

detail, the model concatenates f tSi
and f t+δ

Si
and feeds that

to an MLP that predicts the visibility confidence vi and the
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Figure 2: Network architecture of Explicit Motion Model (EMM),

∗ represents channel-wise cross correlation operator.

relative location and scale changes:

mi = [
xt+δ
i − xti
wt

i

,
yt+δ
i − yti
hti

, log
wt+δ

i

wt
i

log
ht+δ
i

hti
] (2)

in which (xti, y
t
i , w

t
i , h

t
i) is the parameterization of Rt

i . We

can trivially derive R̃t+δ from an inversion transformation

of Eq. 2 by taking as input Rt
i and mi.

Loss. Given a triplet (Rt
i, S

t+δ
i , Rt+δ

i ), we train IMM

with the following training loss:

L = ℓfocal(vi, v
∗
i ) + ✶[v∗i ] ℓreg(mi,m

∗
i ) (3)

where v∗i and m∗
i refer to ground truth values derived from

Rt+δ
i , ✶ is the indicator function, ℓfocal the focal loss for

classification [38] and ℓreg the commonly used smooth ℓ1
loss for regression. Please refer to the supplementary mate-

rial for the network architecture.

3.3. Explicit motion model

Inspired by the literature on single-object tracking [6,22,

35, 36, 54], we propose an explicit motion model (EMM,

Fig.2) in SiamMOT. Specifically, it uses a channel-wise

cross-correlation operator (∗) to generate a pixel-level re-

sponse map ri, which has shown to be effective in mod-

elling dense optical flow estimation [15] and in SOT

for instance-level motion estimation [6, 22, 35, 36]. In

SiamMOT, this operation correlates each location of the

search feature map f t+δ
Si

with the target feature map f tRi
to

produce ri = f t+δ
Si

∗ f tRi
, so each map ri[k, :, :] captures a

different aspect of similarity. Inspired by FCOS [56], EMM

uses a fully convolutional network ψ to detect the matched

instances in ri. Specifically, ψ predicts a dense visibility

confidence map vi indicating the likelihood of each pixel

to contain the target object, and a dense location map pi

that encodes the offset from that location to the top-left and

bottom-right bounding box corners. Thus, we can derive

the instance region at (x, y) by the following transforma-

tion R(p(x, y)) = [x − l, y − t, x + r, y + b] in which

p(x, y) = [l, t, r, b] (the top-left and bottom-right corner

offsets). Finally, we decode the maps as follows:

R̃t+δ
i = R(pi(x

∗, y∗)); vt+δ
i = vi(x

∗, y∗)

s.t.(x∗, y∗) = argmax
x,y

(vi ⊙ ηi)
(4)

where ⊙ is the element-wise multiplication, ηi is a penalty

map that specifies a non-negative penalty score for the cor-

responding candidate region as follows:

ηi(x, y) = λC + (1− λ)S(R(p(x, y)), Rt
i) (5)

where λ is a weighting scalar (0 ≤ λ ≤ 1), C is the cosine-

window function w.r.t the geometric center of the previous

target region Rt
i and S is a Guassian function w.r.t the rela-

tive scale (height / width) changes between the candidate re-

gion (p(x, y))) andRt
i . The penalty map ηi is introduced to

discourage dramatic movements during the course of track-

ing, similar to that in [18, 22, 35, 36].

Loss. Given a triplet (Rt
i, S

t+δ
i , Rt+δ

i ), we formulate the

training loss of EMM as follows:

L =
∑

x,y

ℓfocal(vi(x, y),v
∗
i (x, y))

+
∑

x,y

✶[v∗
i (x, y) = 1](w(x, y) · ℓreg(pi(x, y),p

∗
i (x, y)))

(6)

where (x, y) enumerates all the valid locations in St+δ
i , ℓreg

is the IOU Loss for regression [13,70] and ℓfocal is the focal

loss for classification [38]. Finally, v∗
i and p∗

i are the pixel-

wise ground truth maps. v∗
i (x, y) = 1 if (x, y) is within

R∗t+δ
i and 0 otherwise. p∗

i (x, y) = [x − x∗0, y − y∗0 , x
∗
1 −

x, y∗1 − y] in which (x∗0, y
∗
0) and (x∗1, y

∗
1) corresponds to

the coordinates of the top-left and the bottom-right corner

of ground truth bounding box Rt+δ
i . Similar to [77], we

modulate ℓreg with w(x, y), which is the centerness of lo-

cation (x, y) w.r.t to the target instance Rt+δ
i and is defined

as w(x, y) =
√

min(x−x0,x1−x)
max(x−x0,x1−x) ·

min(y−y0,y1−y)
max(y−y0,y1−y) .

EMM improves upon the IMM design in two ways. First

it uses the channel independent correlation operation to al-

low the network to explicitly learn a matching function be-

tween the same instance in sequential frames. Second, it en-

ables a mechanism for finer-grained pixel-level supervision

which is important to reduce the cases of falsely matching

to distractors.

3.4. Training and Inference

We train SiamMOT in an end-to-end fashion with the

following loss ℓ = ℓrpn + ℓdetect + ℓmotion, in which
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ℓrpn and ℓdetect are the standard losses for RPN [45] and

the detection sub-network [20] in Faster-RCNN. ℓmotion =
∑

xi∈X
L(xi) is used to train the Siamese tracker, wherein

X = ∪M
i=1(R

t
i, S

t+δ
i , Rt+δ

i ) are training triplets. Note that

Rt+δ
i = ∅ if Rt

i does not include a ground truth instance

or the instance in Rt
i is not visible in St+δ

i . Similar to

Faster-RCNN training, we sample Rt
i from the outputs of

the RPN [45].

At inference, a standard IOU-based NMS operation is

first used on the outputs of the detection sub-network (Rt+δ

in Fig. 1) and on those of the Siamese tracker (R̃t+δ in

Fig. 1) independently. Next, the following spatial match-

ing process is used to merge Rt+δ and R̃t+δ: detections

that spatially match (IOU ≥ 0.5) to any tracked instance

are suppressed and thus removed. Then, we adopt a stan-

dard online solver as that in [5, 7, 60, 76]: 1) a trajectory is

continued if its visibility confidence (vti ) is above α; 2) a

trajectory is born if there is a non-matched detection and its

confidence is above β and 3) a trajectory is killed if its visi-

bility confidence (vti ) is below α for consecutive τ frames.

Short occlusion handling. In the case of short occlu-

sions, the visibility confidence for the target would be low

(lower than the threshold α). Instead of killing them, we

keep those tracks in memory and continue searching for

them in future frames (up to τ > 1 frames) to check whether

they can be re-instated. We use the last predicted location

and its corresponding feature as the searching template.

4. Experimental settings

4.1. Datasets and Metrics

MOT17 [42] is the most widely used multi-person tracking

benchmark. It consists of 7 training and 7 test videos,

ranging from from 7 to 90 seconds long. The videos feature

crowded scenes in indoor shopping malls or outdoor

streets. We follow the evaluation protocol of [42] and

report our results using several metrics: MOTA (Multiple

Object Tracking Accuracy), IDF1 (ID F1 score), FP (False

Positives), FN (False Negatives) and IDsw (ID switches).

TAO-person [14] is a newly-established large scale

multi-person tracking benchmark. It is a subset of the

TAO dataset [14] and it consists of 418 training and 826

validation videos. To include a large variability of scenes,

the videos are collected by mixing existing datasets like

AVA [21] (generic movies), Charades [50] (indoor activi-

ties), BDD [68] (streets), Argoverse [9] (streets) and other

sports videos. This dataset contains rich motion artifacts

(e.g. motion and defocus blur), as well as diverse person

motion patterns (Fig. 3c), which makes tracking persons

challenging. We follow the evaluation protocol of [14] and

use the provided toolbox to report Federated Track-AP

(TAP). Federated evaluation [24] is used because not all

videos are exhaustively annotated. Different from MOTA,

Track-AP [66] highlights the temporal consistency of the

underlying trajectories.

Caltech Roadside Pedestrians (CRP) [25] is a dataset

for person analysis in videos. It consists of 7 videos,

each roughly 20 minutes long. The videos are captured

from a camera mounted to a car while driving, and they

mainly feature outdoor roadside scenes. Due to the fast

camera motion, the pedestrians appear as they are moving

relatively much faster than in other datasets (Fig. 3b). We

report results on the same metrics used for MOT17.

Datasets analysis. Each of these datasets contains differ-

ent challenges for tracking. For example, tracking people

in MOT17 is challenging due to occlusion and crowded

scenes, even though people do not move fast and their poses

are constant (i.e., standing). In contrast, scenes in CRP are

not as crowded, but the camera motion is very large and

the pedestrian’s position changes quickly. Finally, TAO in-

cludes a wide range of scene types and video corruption

artifacts. As we focus on modelling short term motion

for tracking, here we examine the characteristics of motion

in each of these datasets. Towards this, we calculate the

ground truth motion vector m as in Eq. 3 for every person,

between two consecutive annotated frames. As videos are

not annotated densely (i.e., every frame), we normalize m

by δ (their time difference). We present dataset-specific his-

tograms in Fig. 3. People in MOT17 dataset have relatively

small motion compared to those in TAO and CRP.

4.2. Implementation details

Network. We use a standard DLA-34 [69] with feature

pyramid [37] as the Faster-RCNN backbone. We set r = 2,

so that our search region is 2× the size of the tracking target.

In IMM, f tSi
and f t+δ

Si
have the same shape R

c×15×15 and

the model is parametrized as a 2-layer MLP with 512 hidden

neurons. In EMM, instead, f tRi
∈ R

c×15×15 and f t+δ
Si

∈

R
c×30×30, so that they are at the same spatial scale; the

model is a 2-layer fully convolutional network, with stacks

of 3× 3 convolution kernels and group normalization [62]).

Training samples. As previously mentioned, we train

SiamMOT on pairs of images. When video annotations are

not available, we follow [28,76] by employing image train-

ing, in which spatial transformation (crop and re-scale) and

video-mimicked transformation (motion blur) are applied to

an image such that a corresponding image pair is generated.

When video annotations are available, we use video train-

ing, in which we sample pairs of two random frames that

are at most 1 second apart.

Training. We jointly train the tracker and detection net-

work. We sample 256 image regions from the output of

the RPN to train them. We use SGD with momentum as
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(a) MOT17

(b) CRP

(c) TAO-Person

Figure 3: 3D histogram of normalized motion offset per second

across different datasets.

the optimizer, and we train our model for 25K and 50K it-

erations, for CrowdHumand [48] and COCO [39] datasets

respectively. We resize the image pair during training such

that its shorter side has 800 pixels. We start training with a

learning rate of 0.02 and decrease it by factor 10 after 60%
of the iterations, and again after 80%. We use a fixed weight

decay of 10−4 and a batch size of 16 image pairs.

Inference. We empirically set linking confidence α = 0.4
and detection confidence β = 0.6, and we present the sen-

sitivity analysis of α and β in the supplementary material.

We keep a trajectory active until it is unseen for τ = 30
frames.

5. Ablation analysis

We carry out ablation analysis on MOT17, CRP and

TAO-person, which are considerably different from each

other (sec. 4.1, Fig. 3) and provide a good set for ablation

study. We adopt image training to train SiamMOT, as we

don’t have large-scale video annotations to train a gener-

alized model. Specifically, we train models from the full-

body annotation of CrowdHuman [48], and evaluate it on

MOT17-train and CRP datasets as they have amodal bound-

ing box annotation. We train models from visible-body an-

notations from CrowdHuman and COCO [39] and evaluate

it on the TAO-person dataset. We do this to try to keep the

models as comparable as possible while still adhering to the

annotation paradigm of each dataset (amodal vs modal per-

son bounding boxes). In order to directly compare frame-to-

frame tracking, we adopt the same solver as that in Track-

tor [5], in which the trajectory is killed immediately if it is

unseen (i.e. τ = 1 frame).

5.1. Instancelevel motion modelling

We investigate the benefits of motion modelling for

MOT (Table 1). We compare SiamMOT with IMM and

EMM against two baselines: (1) our implementation of

Tracktor [5], which we obtain by removing the Siamese

tracker from SiamMOT and instead use the detection net-

work to regress the location of the target in the current

frame, and (2) Tracktor + Flow, that adds a flow-based

model to estimate the movement of people across frames.

This flow-based model can be considered a simple for-

ward tracker that “moves” the previous target region to the

current frame and then uses the detection network (as in

Tracktor) to regress to its exact location in the current

frame. The movement of the person instance is estimated

by taking the median flow field of its constituent pixels. In

our experiments we use a pre-trained state-of-the-art PWC-

net [51] to estimate the pixel-wise optical flow field. Finally,

for fair comparison we use the same detections for all four

models.

Results show that our implementation of Tracktor
achieves competitive results on both MOT17 and TAO-

person (higher than those reported by [14], [5]), but

performs poorly on CRP, as its motion model is too

weak to track people that move too fast. Adding

flow to Tracktor significantly improves its performance

(Tracktor + Flow), especially on the challenging CRP and

TAO-person datasets. SiamMOT improves these results

even further, for both IMM and EMM. The performance

gap is especially interesting on the CRP dataset, where

both MOTA and IDF1 increased substantially (i.e., +35
MOTA and +25 IDF1 over Tracktor + Flow). Between

these, EMM performs similar to IMM on CRP, but sig-

nificantly better on MOT17 and TAO-person. This shows

the importance of explicit template matching, which is con-

sistent with what observed in the SOT literature [34, 35].

Finally, note that tracking performance keeps increasing

as we employ better motion models (i.e., Tracktor <

Flow < IMM < EMM). This further validates the im-

portance of instance-level motion modelling in MOT. In

addition, SiamMOT are significantly more efficient than

Tracktor + Flow, in which flow does not share computa-

tion with Tracktor.

5.2. Training of SiamMOT: triplets sampling

We now evaluate how the distribution of triplets used to

train SiamMOT (sec. 3.4) affects its tracking performance.
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Models MOT17 Caltech Roadside Pedestrians (CRP) TAO-person

Runtime MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDsw ↓ MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDsw ↓ TAP@0.5 ↑

Faster-RCNN (Tracktor) 23.0 fps 58.6 53.0 3195 42488 858 15.9 25.1 632 21238 1126 29.1%

Faster-RCNN + Flow 12.5 fps 60.3 54.8 3518 40387 716 41.8 56.4 2381 11934 1594 32.8%

Faster-RCNN + IMM 19.5 fps 61.5 57.5 5730 36863 678 76.8 81.2 2583 2391 1377 34.7%

Faster-RCNN + EMM 17.6 fps 63.3 58.4 5726 34833 671 76.4 81.1 2548 2575 1311 35.3%

Table 1: Results on MOT17 train, Caltech Roadside Pedestrians and TAO-Person datasets. FPS are calculated based on MOT17 videos

that are resized to 720P. IMM and EMM are the motion model presented for SiamMOT.

Sampled triplets MOT17 TAO-person

MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDsw ↓ TAP@0.5 ↑

P + H 59.7 58.6 9639 34976 618 34.2%

P + N 62.7 58.3 6275 34955 697 35.0%

P + H + N 63.3 58.4 5726 34833 671 35.3%

Table 2: Effects of sampled triplets for training forward tracker in

SiamMOT. P / N / H are positive / negative / hard training triplet.

P+H triplets are usually used in single-object tracking.

Given a set of training triplets X = ∪N
i=1(R

t
i, S

t+δ
i , Rt+δ

i )
from image pair {It, It+δ}, a triplet can be either negative,

positive or hard. It is negative (N) whenRt
i does not include

a person, positive (P) when Rt
i and St+δ

i includes the same

person, and hard (H) when Rt
i includes a person, but St+δ

i

does not include the target person.

Similar to the training of SOT, we start by training the

Siamese tracker with positive and hard negative (P + H)

triplets. As results in Tab. 2 shows, the model achieves rea-

sonable IDF1 on MOT17, which means that the tracker can

follow a true person quite robustly, but it achieves relatively

low MOTA, as it occasionally fails to kill false positive

tracks. This is because the Siamese tracker in SiamMOT

usually starts with noisy detection rather than with human-

annotated regions (as in SOT). Instead, P + N performs bet-

ter and combining all of them P + H+N achieves the best

results overall.

5.3. Training of SiamMOT: joint training

We now investigate the importance of training the

region-based detection network jointly with our Siamese

tracker. First, we look at the impact that joint training has

on the accuracy of our tracker and later on the accuracy of

the person detector.

Tracking performance. We train a model only with the

Siamese tracker (i.e. detection branch is discarded) and uti-

lize the same detections used in the experiments presented

in sec. 5.1 and Tab. 1. The MOTA achieved by EMM on

MOT17 is 63.3 with joint training vs 61.5 without. This

gap shows the benefits of joint training.

Detection performance. We compare two Faster-RCNN

models trained with and without our Siamese tracker

on MOT17. These models achieve 73.3% and 73.4%

τ (frames) MOT17 TAO-person

MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDsw ↓ TAP@0.5 ↑

1 63.3 58.4 5726 34833 671 35.3%

5 63.5 60.0 5818 34497 622 35.6%

15 63.4 60.8 5979 34454 616 36.3%

30 63.3 60.6 6106 34465 658 36.6%

60 63.0 60.2 6510 34385 699 37.2%

Table 3: Results of SiamMOT inference that terminates active

trajectories after they are unseen within τ consecutive frames.

AP@IOU=0.5, which indicates that the joint training in

SiamMOT has no negative impact on the detection network.

Overall, these results show that joint training is very im-

portant for SiamMOT and leads to the best results.

5.4. Inference of SiamMOT

Finally, we investigate how the inference of SiamMOT

affects MOT performance. Similar to Tracktor [5] and Cen-

terTrack [76], SiamMOT focuses on improving local track-

ing as long as the person is visible. However, a person

can be shortly invisible due to occlusion (e.g. when cross-

ing each other) that is common in crowded scenes such as

MOT17. In order to track through these cases, we allow

SiamMOT to track forward even when the trajectory is not

visible, i.e. the tracker does not terminate the trajectory un-

til it fails to track the corresponding target for τ consecutive

frames. Results in Tab. 3 show that tracking performance

increases with τ , especially IDF1 score / TrackAP that mea-

sures the temporal consistency of trajectories. This means

that our tracker is capable of tracking beyond few consecu-

tive frames. Results also show that the improvement satu-

rates around τ = 30 (1s for 30 FPS videos). The reason is

that people have likely moved outside of our search region

by that time. In the future we will explore improving the

motion modelling of the tracker in SiamMOT such that it

can track through longer occlusions.

6. Comparison to State-of-the-art

Finally, we compare our SiamMOT with state-of-the-art

models on three challenging multi-person tracking datasets:

MOT17 [42], TAO-person [14] and HiEve Challenge [41].
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Method MOTA IDF1 MT ML FP FN IDsw

STRN [64] 50.9 56.5 20.1% 37.0% 27532 246924 2593

Tracktor++ [5] 53.5 52.3 19.5% 36.6% 12201 248047 2072

DeepMOT [65] 53.7 53.8 19.4% 36.6% 11731 247447 1947

Tracktor++ v2 [5] 56.5 55.1 21.1% 35.3% 8866 235449 3763

NeuralSolver [8] 58.8 61.7 28.8% 33.5% 17413 213594 1185

CenterTrack [76] 61.5 59.6 26.4% 31.9% 14076 200672 2583

SiamMOT 65.9 63.3 34.6% 23.9% 18098 170955 3040

Table 4: Results on MOT17 test set with public detection.

Method Backbone TAP@0.5 TAP@0.75

Tractor [14] ResNet-101 26.0% n/a

Tracktor++ [14] ResNet-101 36.7% n/a

SiamMOT ResNet-101 41.1% 23.0%

SiamMOT DLA-169 42.1% 24.3%

SiamMOT+ DLA-169 44.3% 26.2%

Table 5: Results on TAO-person validation set.

MOT17 (Tab. 4). We report results on the test set using

publicly released detections, as done for the official MOT17

Challenge. We use EMM as the tracker of SiamMOT, pre-

train using image training on CrowdHuman and train on

MOT17 using video training.

We obtain our results by submitting SiamMOT predic-

tions to the official evaluation server of the challenge1. The

results show that SiamMOT outperforms all previous meth-

ods, including the popular Tracktor++ v2 (+9.4 MOTA) and

state-of-the-art CenterTrack [76] (+4.4 MOTA).

Note how SiamMOT models instance’s motion with

region-based features while CenterTrack uses point-based

features. As recent research shows [44, 55, 67], region-

based features are consistently better for instance recogni-

tion and localization. We conjecture this is also true for in-

stance tracking. In addition, CenterTrack implicitly learns

to infer the instance’s motion in a similar way to the pro-

posed IMM, which is not as good as EMM, as shown in

Sec. 5, and by a large body of research in single-object

tracking [22, 34, 35, 54].

TAO-person (Tab. 5). We report results on the validation

set similar to [14]. We train a SiamMOT with EMM using

image training on MSCOCO and CrowdHuman datasets.

SiamMOT outperforms state-of-the-art Tracktor++ by a sig-

nificant 4.4 TrackAP@0.5. As pointed out in [14], link-

ing tracklets with person re-identification embeddings is

important in the TAO dataset, as there are a number of

videos where people are moving in and out of camera view,

which, in this case, is beyond the capability of instance-

level motion modelling. Thus, we evaluate SiamMOT+

that merges tracklets with an off-the-shelf person re-id

model, the one used in Tracktor++ [5]. Thanks to this,

1https://motchallenge.net/

Method MOTA IDF1 MT ML FP FN IDsw

DeepSORT [60] 27.1 28.6 8.5% 41.5% 5894 42668 2220

FCS-Track [40] 47.8 49.8 25.3% 30.2% 3847 30862 1658

Selective JDE [61] 50.6 56.8 25.1% 30.3% 2860 29850 1719

LinkBox [43] 51.4 47.2 29.3% 29.0% 2804 29345 1725

SiamMOT (DLA-34) 51.5 47.9 25.8% 26.1% 3509 28667 1866

SiamMOT (DLA-169) 53.2 51.7 26.7% 27.5% 2837 28485 1730

Table 6: HiEve benchmark leaderboard (public detection).

SiamMOT+ sets new state-of-the-arts on the challenging

TAO-person dataset. Although Tracktor++ gains a large

8% TrackAP@0.5 boost by re-id linking, we observe a

less significant improvement for SiamMOT. This is because

our motion model is already capable of linking challeng-

ing cases in TAO, reducing the cases where re-id linking is

necessary.

HiEve challenge (Tab. 6). Finally, to further show the

strength of SiamMOT, we present results on the recently re-

leased Human in Events (HiEve) dataset [41], hosted at the

HiEve Challenge at ACM MM’20 [40]. The dataset con-

sists of 19 training and 13 test videos with duration rang-

ing from 30 to 150 seconds, and the videos mainly fea-

ture surveillence scenes in subways, restaurants, shopping

malls and outdoor streets. We report results on the test set

using the publicly released detections. We jointly train a

SiamMOT with EMM on CrowdHuman and HiEve train-

ing videos. We obtain our results by submitting its predic-

tions to the official evaluation server of the challenge2. We

submit two sets of results, one obtained with a lightweight

DLA-34 backbone and one with a heavier-weight DLA-

169. While the former already matches the top performance

in ACM MM’20 HiEve Challenge [40], the latter beats all

winning methods that are heavily tuned for the challenge.

7. Conclusion

We presented a region-based MOT network – SiamMOT,

which detects and associates object instances simultane-

ously. In SiamMOT, detected instances are temporally

linked by a Siamese tracker that models instance motion

across frames. We found that the capability of the tracker

within SiamMOT is particularly important to the MOT per-

formance. We applied SiamMOT to three different multi-

person tracking datasets, and it achieved top results on all

of them, demonstrating that SiamMOT is a state-of-the-art

tracking network. Although SiamMOT has proven to work

well on person tracking, its framework can be easily adapted

to accommodate multi-class multi-object tracking, and we

plan to explore this direction in the future.

2http://humaninevents.org/

12379



References

[1] Anton Andriyenko and Konrad Schindler. Multi-target track-

ing by continuous energy minimization. In CVPR 2011.

IEEE, 2011.

[2] Yutong Ban, Sileye Ba, Xavier Alameda-Pineda, and Radu

Horaud. Tracking multiple persons based on a variational

bayesian model. In European Conference on Computer Vi-

sion, pages 52–67. Springer, 2016.

[3] Jerome Berclaz, Francois Fleuret, and Pascal Fua. Robust

people tracking with global trajectory optimization. In 2006

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06). IEEE, 2006.

[4] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pas-

cal Fua. Multiple object tracking using k-shortest paths op-

timization. TPAMI, 33(9):1806–1819, 2011.

[5] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. In ICCV, 2019.

[6] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In ECCV, 2016.

[7] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016

IEEE International Conference on Image Processing (ICIP),

pages 3464–3468. IEEE, 2016.
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